
Regularized Conventions:
Equilibrium Computation as a Model of Pragmatic Reasoning

Athul Paul Jacob
apjacob@mit.edu

Gabriele Farina
gfarina@mit.edu

Jacob Andreas
jda@mit.edu

Abstract

We present a model of pragmatic language
understanding, where utterances are produced
and understood by searching for regularized
equilibria of signaling games. In this model
(which we call RECO, for Regularized Conven-
tions), speakers and listeners search for con-
textually appropriate utterance–meaning map-
pings that are both close to game-theoretically
optimal conventions and close to a shared, “de-
fault” semantics. By characterizing pragmatic
communication as equilibrium search, we ob-
tain principled sampling algorithms and formal
guarantees about the trade-off between com-
municative success and naturalness. Across
several datasets capturing real and idealized hu-
man judgments about pragmatic implicatures,
RECO matches or improves upon predictions
made by best response and rational speech act
models of language understanding.

1 Introduction

Meaning in language is fluid: speakers can use
the word blue to pick out a color that in other con-
texts would be described as purple, or identify a
friend as the one with glasses even in a room in
which everyone is wearing glasses (Figure 1). Such
context-dependent meanings can arise as conven-

tions within groups of language-users communi-
cating repeatedly to solve a shared task (Hawkins
et al., 2017). But remarkably, they can also arise
without any interaction at all, between pairs of lan-
guage users who share only common knowledge of
words’ default meanings.

What makes this kind of context-dependent lan-
guage use possible? Almost all existing computa-
tional models of pragmatics are implemented as
iterated response procedures, in which listeners
interpret utterances by reasoning about the pos-
sible intentions of less-sophisticated speakers (or
vice-versa) (Golland et al., 2010; Degen, 2023).
These models have been successful at explaining a
number of aspects of pragmatic language use. But
they can be challenging to fit to real data: because
they specify behavior in terms of an algorithm that
speakers and listeners implement, rather than an
objective that they optimize, iterated response mod-
els can be highly sensitive to low-level details of
initialization and runtime.

We present an alternative model of pragmatic
understanding based on equilibrium search rather
than iterated response. In this model (which we
call Regularized Conventions, or RECO), speak-
ers and listeners solve communicative tasks like
the ones in Figure 1 by searching for utterance–
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Figure 1: The RECO model. To communicate (or resolve) an intended meaning from a set of possibilities (a), language users
search for a joint distributions over utterances and interpretations that is close to a distribution encoding “default semantics” (b)
and close to some (game-theoretically) optimal signaling convention (d). The resulting “regularized conventions” (c) predict
human judgments on a variety of implicature tasks.



meaning mappings that are both close some to a
(game-theoretically) optimal convention and close
to a set of default semantics. In Figure 1, for ex-
ample, this “regularized convention” assigns high
probability to the use of blue to signal the intended
color, and low (but nonzero) probability to the use
of purple instead. This strategy is both close to one
of many optimal strategies (in which every utter-
ance arbitrarily, but uniquely, picks out one color),
and close to color terms’ standard interpretation
(in which the target color is improbably, but not
impossibly, described as blue).

RECO is by no means the first application
of game-theoretic tools to model pragmatic lan-
guage understanding (Parikh, 2000; Franke, 2013;
Jäger, 2012)—many iterated response models (e.g.
Franke, 2009a) also have a game-theoretic founda-
tion. But by leveraging recently developed algo-
rithmic tools for computing regularized equilibria
of games, RECO makes it possible to efficiently
learn models of pragmatic communication from
data, and to provide formal guarantees about their
communicative success and deviation from default
semantic. The algorithms that compute these equi-
libria turn out to have a very similar structure to
probabilistic iterated response methods (Frank and
Goodman, 2012), offering a possible bridge be-
tween algorithmic characterizations of pragmatic
reasoning and RECO’s optimality-based characteri-
zation.

Most importantly, RECO gives a good fit to hu-
man data: on classic exemplars of pragmatic im-
plicature, reference tasks eliciting graded human
judgments, and tasks featuring perceptually com-
plex meaning spaces, its predictions match or mod-
estly outperform standard iterated response models.
These results highlight the usefulness of modern
game-theoretic tools in modeling language produc-
tion and comprehension.

2 Background and Preliminaries

Consider again the example in Figure 1. We want to
understand the process by which a SPEAKER might
use blue to refer to the second color in the second
row, and by which a LISTENER might resolve it
correctly.

2.1 Signaling Games

This problem has often been formulated as a sig-
nalling game (Lewis, 1971), which features two
players: the SPEAKER and the LISTENER. In this

game, a target meaning (representing a commu-
nicative need) is first sampled from a space of pos-
sible meanings m ∈ M with probability p(m). To
communicate this meaning, the SPEAKER produces
an utterance according to a policy πS(u | m). Fi-
nally, the LISTENER produces an interpretation
according to a policy πL(m

′ | u).
Informally, communication is successful if the

LISTENER’s interpretation is the same as the
SPEAKER’s intended meaning. More formally (and
somewhat more generally), we may define commu-
nicative success in terms of rewards. Consider any
(meaning, utterance, interpretation) combination
(m,u,m′). The SPEAKER’s reward (or “payoff”)
rS(m,u,m′) in this interaction is the sum of:

• a cost −c(u) that the SPEAKER incurs for pro-
ducing utterance u (all else equal, they may
for example prefer short utterances); and

• a success measure, equal to 1 only when m′

matches the target m, that is, 1[m′ = m].

Together,

rS(m,u,m′) := −c(u) + 1[m′ = m].

Most models assume that the LISTENER’s reward
rL(m,u,m′) depends only on communicative suc-
cess:

rL(m,u,m′) = 1[m′ = m].

Having specified rewards for all interactions,
the expected utility of each player given policies
(πS, πL) for the SPEAKER and LISTENER respec-
tively is defined as the expected payoff when the
meanings m are sampled from a prior distribution
p(m), and agents sample from their policies:

ūi(πS, πL) := E
m∼p

u∼πS(·|m)
m′∼πL(·|u)

pi(m,u,m′) (1)

for i ∈ {S,L}.

2.2 Computing Policies for Signaling Games
How should a SPEAKER and LISTENER communi-
cate to maximize the probability of success? We
call a pair of policies, for the SPEAKER and for the
LISTENER a Nash equilibrium if nobody wants to
deviate. Notice that there may in general be multi-
ple such policies: in Figure 1, for example, there
is one equilibrium policy in which the intended
meaning is called blue and the alternative is called
purple, but another equilibrium policy in which the



former is called purple and the latter called green
(in clear violation of those words’ standard use in
English!). When a SPEAKER and LISTENER com-
municate for the first time, how can they ensure
that their policies are compatible?

Iterated response methods A popular family of
approaches attempt to ensure communicative suc-
cess algorithmically. These approaches typically
begin from an assumption that SPEAKERs’ and
LISTENERs’ common knowledge of language con-
sists of a literal semantics (which assigns context-
independent meanings to utterances). Agents then
derive policies by computing behaviors likely to
be successful given an interlocutor communicat-
ing literally, or given an interlocutor themself at-
tempting to respond to a literal communicator. Ap-
proaches in this family involve (Iterated) Best Re-
sponse (I)BR (Jäger, 2007; Franke, 2009b,a) and
Rational Speech Acts (RSA) (Frank and Goodman,
2012).

(I)BR is an iterative algorithm in which speak-
ers (listeners) alternatingly compute the highest-
utility action keeping the listener’s (speaker’s) pol-
icy fixed:

π
(t+1)
L (m′ | u) = 1

[
m′ = argmax

m
π
(t)
S (u | m)

]
π
(t+1)
S (u | m) = 1

[
u = argmax

u′
π
(t)
L (m | u′)

]
RSA frames communication as one in which
Bayesian listeners and speakers reason recursively
about each other’s beliefs in order to choose utter-
ances and meanings:

π
(t)
L (m | u) ∝ π

(t)
S (u | m) · p(m)

π
(t)
S (u | m) ∝

(
π
(t)
L (m | u)/c(u)

)α
In both approaches, “good” policies are obtained
by assuming that speakers and listeners will run
a specific algorithm from a specific starting point
(rather than generically optimizing a known objec-
tive). As a result, a key feature of both algorithms
is its sensitivity to the choice of initial (t = 0)
policy; their convergence behavior remains poorly
understood.

piKL-Hedge and regularized no-regret dynam-
ics A set of principled techniques for solving
games comes from the vast literature of online opti-
mization and learning in games. Hedge (Littlestone
and Warmuth, 1994; Freund and Schapire, 1997) is

a popular iterative algorithm in this family that con-
verges to a coarse correlated equilibrium (Hannan,
1957) and to a Nash equilibrium in the special case
of two-player zero-sum games. However, in many
cases, the equilibria that is of interest is one that
is close to certain anchor policies – which Hedge
does not guarantee.

In order to sidestep this issue while retaining the
appealing properties of learning in games, Jacob
et al. (2022) introduced piKL-Hedge. piKL-Hedge
has been used in the context of board games, like
Diplomacy (FAIR et al., 2022; Bakhtin et al., 2022)
to find equilibria that are close to human imitation
learned anchor policies. Recently, piKL-Hedge has
been used in the context of language models, with
the objective of increasing consensus between dis-
riminative and generative approaches to language
model generation (Jacob et al., 2023).

3 Our Approach: Pragmatic Inference as
Regularized Equilibrium Search

Building on this past work, the key idea under-
lying the RECO model is to define an objective
that makes it possible to directly optimize for both
communicative success and adherence to shared
background knowledge of language. As noted in
Section 2.2, simply searching for high-utility equi-
libria of signaling games is unlikely to predict the
behavior of human language users, or result in suc-
cessful communication with new interlocutors: in-
stead, we must guide inference toward policies that
look like natural language. In RECO, we do so by
optimizing utilities of the following form:

ũS(πS, πL) := ūS(πS, πL)− λS ·DKL(πS ∥ τS),

ũL(πS, πL) := ūL(πS, πL)− λL ·DKL(πL ∥ τL).

Here τS and τL represent the SPEAKER’s and LIS-
TENER’s prior knowledge of language (independent
of any specific communicative goal or context). We
refer to these policies as the default semantics in
the language used for communication. They play
a similar role to the literal semantics used by RSA
and other iterated response models. But here, we
need not assume that they correspond specifically
to literal semantics—instead, they model agents’
prior expectations about how utterances are likely
to be produced and interpreted in general by prag-
matic language users.

The regularization parameters λS and λL control
the amount of regularization towards the default
semantics τS, τL. When the value of λi is large,



Player i ∈ {S,L} will be regularized towards only
considering policies extremely close to τi; con-
versely, when λi is close to zero, the player will
not be penalized for adopting semantics that differ
significantly from τi.

3.1 Notation and representation of policies

In this subsection, we lay down the notation and
representation details for the policies produced by
our algorithm. Each agent’s policy consists of a
mapping from that player’s observations to a distri-
bution over actions. In order to provide a compact
description of the algorithm, as well as an efficient
vectorized implementation, we represent such a
mapping as a row-stochastic matrix, with rows in-
dexed by observations and columns indexed by
actions. For the SPEAKER, the set of observations
coincides with the set of meanings available in a
given communicative context, and the set of ac-
tions coincides with the set of possible utterances.
For the LISTENER, observations are utterances and
actions are meanings. See Figure 2 for examples.
We denote with S(t) ∈ RM×U the policy of the
speaker at time t, and with L(t) ∈ RU×M that of
the listener represented in this matrix form. Simi-
lar, we will also represent the anchor policies (i.e.,
default semantics) τS, τL in this representation as
matrices τS ∈ RM×U and τL ∈ RU×M . Instances
of such matrix objects can be seen in Figure 2.

3.2 RECO: Computation of Approximate
Convention-Regularized Equilibria

Given the regularized utilities ũS and uL defined
above, we use the piKL-Hedge algorithm (Jacob
et al., 2022) to progressively refine the SPEAKER’s
and LISTENER’s policy toward equilibrium (in the
sense of Section 2.2). Intuitively, piKL-Hedge per-
forms a variant of projected gradient ascent in the
geometry of entropic regularization where projec-
tions are equivalent to softmax (normalized expo-
nentiation). In order to apply piKL-Hedge, we start
by computing the gradients of the unregularized
utility functions ūS, ūL defined in (1).

Let p ∈ RM be the vector whose entries corre-
spond to p(m), the prior distribution over mean-
ings. Similarly, we let c ∈ RU denote the vector of
utterance costs. Finally, let P ∈ RM×M be the di-
agonal matrix whose diagonal equals p. With this
notation, it is straightforward to verify that the gra-
dient of the unregularized utility function ūS of the
SPEAKER player, as a function of the matrix-form

policies S,L, is given by

∇S(L) := −pc⊤ +PL⊤ ∈ RM×U . (2)

Similarly, for the LISTENER player we have

∇L(S) := S⊤P ∈ RU×M . (3)

With the above gradients, piKL-Hedge prescribes
the following dynamics: first, at time 0, set S̄(0) =
L̄(0) := 0; then, at each time t ≥ 0, the next policy
S(t+1),L(t+1) is chosen according to the update
rules:

S(t+1) row∝ exp

{
∇S(L̄

(t)) + λS log τS

1/(ηSt) + λS

}
,

L(t+1) row∝ exp

{
∇L(S̄

(t))⊤ + λL log τL

1/(ηLt) + λL

}
,

S̄(t+1) =
t

t+ 1
S̄(t) +

1

t+ 1
S(t+1),

L̄(t+1) =
t

t+ 1
L̄(t) +

1

t+ 1
L(t+1),

where
row∝ denotes row-wise proportionality and

exponentiation is intended elementwise.
piKL-Hedge dynamics have strong guarantees,

including the following:

• the average correlated distribution of play of
SPEAKER and LISTENER converges to the set
of coarse-correlated equilibria of the game
defined by the regularized utilities ũS, ũL;

• for any i ∈ {S,L}, the average policy of
Player i lies within a distance of roughly 1/λi

from the default semantics τi;

• the policies produced by piKL-Hedge guar-
antee that the player’s regret will remain
bounded by a functions whose growth is loga-
rithmic in the number of training steps.

3.3 Special Case: Uniform Priors, No Costs

When the prior over the objects is uniform, and
utterance costs are all set to zero, the gradients
∇S(L) and ∇L(S), defined in (2) and (3), simplify
into

∇S(L) =
1

|M |
L, ∇L(S) =

1

|M |
S.

Hence, piKL-Hedge reduces to the simple algo-
rithm that repeatedly updates and renormalizes pol-



icy matrices according to

S(t+1) row∝ exp

{
(L̄(t))⊤ + λ̂S log τS

1/(η̂St) + λ̂S

}
,

L(t+1) row∝ exp

{
(S̄(t))⊤ + λ̂L log τL

1/(η̂Lt) + λ̂L

}
,

where we let λ̂i := |M |λi and η̂i := ηi/|M | for all
i ∈ {S,L}.

The above procedure is similar to the Rational
Speech Acts model (Frank and Goodman, 2012), a
widely used probabilistic iterated response model
of pragmatics. In particular, using the same matrix
notation from above, we may express RSA (with
α = 1.0) as:

L̄(0) = τL

S(t+1) row∝ (L̄(t))⊤,

S̄(t+1) = S(t+1),

L(t+1) row∝ (S̄(t))⊤,

L̄(t+1) = L(t+1).

Thus, it is also possible to interpret RECO as
an RSA variant in which (1) the final policy at
level t is a weighted average of policies computed
at lower levels, (2) both speakers and listeners
downweight actions that are low-probability under
the default semantics.

Having defined the RECO objective and proce-
dures for optimizing it, the remainder of this pa-
per evaluates whether RECO can successfully pre-
dict human judgments across standard test-beds for
pragmatic implicature.

4 Two Model Problems: Q-implicature
and M-implicature

We begin with two simple, widely studied “model
problems” in pragmatics: Quantity implicature and
Manner implicature. The experiments in this sec-
tion aim to demonstrate that RECO makes predic-
tions that agree qualitatively with key motivating
examples in theories of pragmatics.

4.1 Quantity Implicature
Quantity (or “scalar”) implicatures are those in
which a weak assertion is interpreted to mean that
a stronger assertion does not hold. (For example,
Avery ate some of the cookies 7→ Avery did not
eat all of the cookies, where 7→ denotes pragmatic
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Figure 2: Quantity implicatures in RECO. (Left) Matrices rep-
resenting conditional probabilities that represent the default
semantics τS and τL. (Right) Matrices representing conditional
probabilities that represent the resulting regularized conven-
tions πS and πL. In this setting, RECO is able to predict the
correct set of interpretations.

implication; (Huang, 1991)). The reference game
we use as a model of scalar implicature is adopted
from Jäger (2012); its associated default semantics
is shown in Figure 2. Here, the utterances none,
some, and all are used to communicate meanings
none, some (not all), and all. Some can (liter-
ally) denote all (as we may felicitously say Avery
ate some of the cookies; in fact, Avery ate all of
them), but is generally understood to implicate not
all. The policy found by RECO is shown in Fig-
ure 2, where it can be seen that this prediction is
recovered by RECO.

4.2 Manner Implicature

Another important class of implicatures are Manner
implicatures, in (a subclass of) which an atypical
utterance is used to denote that a situation occurred
in an atypical way (I started the car 7→ The car
started normally; but I got the car to start 7→ The
car started abnormally; Levinson, 2000). The ref-
erence game we adopt as a model of such implica-
tures is due to Bergen et al. (2016). In this model,
we assume we have two utterances (short and long)
and two meanings (freq and rare) satisfying the
following properties: (1) freq is more often the in-
tended meaning than rare, (2) long is more costly
to communicate than short, but (3) either long or
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Figure 3: Manner implicatures in RECO. (Left) Matrices rep-
resenting conditional probabilities that represent the default
semantics τS and τL. (Right) Matrices representing condi-
tional probabilities that represent the resulting regularized
conventions πS and πL. By incorporate prior probabilities of
meanings and costs for utterances, RECO is able to predict the
correct set of interpretations.

Literal BR
LISTENER SPEAKER RSA RD-RSA RECO

ALL 73.57% 90.04% 95.07% 94.98% 95.96%

SIMPLE 70.10% 88.16% 96.02% 96.02% 96.02%
COMPLEX 83.86% 97.83% 94.74% 94.35% 98.18%
TWINS 97.61% 93.43% 97.61% 98.98% 97.61%
ODDMAN 94.97% 94.97% 94.97% 94.97% 94.97%

Table 1: Correlation across different methods with graded
human judgements in four reference games Frank (2016) (with
the best hyperparameter settings). RECO performs better than
the alternatives in ALL .

short may, by default, denote freq or rare. In such
situations, short is understood to implicate freq
and long to implicate rare; as noted by Bergen
et al. (2016), RSA and related theories require sub-
stantial modification to derive these predictions.

When using RECO to perform equilibrium
search with these costs and priors, it natively pre-
dicts the correct set of interpretations (Figure 3).

5 Graded Human Judgments

We next study a family of four reference tasks
introduced by Frank (2016), which we refer to
as SIMPLE , COMPLEX , TWINS and ODDMAN .
We refer readers to the original work for the default
meanings that define each of these tasks. Frank
gathered graded human judgments about the likeli-

. Context Utterance

1. purple

2. blue

3. blue

Table 2: Example of the Colors in Context task (Monroe et al.,
2017). The SPEAKER produces an utterance to refer to the
reference color (the one within the black box) subject to the
context to a LISTENER. As in Figure 1, notice how context
affects the utterance.

Literal BR
LISTENER SPEAKER RSA RD-RSA RECO

CIC (val.)84.88% 75.90% 84.18% 84.18% 85.17%
CIC (test) 83.34% 74.28% 83.41% 83.41% 83.62%

Table 3: Performance of different models on Colors in Context
(Monroe et al., 2017). All approaches aside from BR perform
well on this task – as even literal models have access to all
three referents. Note that, RECO performs best.

hood that particular utterances might carry partic-
ular meanings. RECO, like RSA-family models,
captures probabilistic associations between utter-
ances and meanings, we may evaluate the quality of
its predictions in terms of correlations with human
judgments.

Comparisons between RECO, RSA, BR
SPEAKER (i.e., best-response to a literal speaker)
and RD-RSA (Zaslavsky et al., 2021) are shown in
Table 1, with additional information about param-
eters in Figure 4. In these figures, ALL denotes
correlations computed across all four tasks. It can
be seen that RECO modestly improves upon the
best predictions of RSA across a range of speaker
parameters.

6 Complex Referents and Utterances

Our final experiments focus on Colors in Context
( CIC ), a dataset of color reference tasks like the
one in Figure 1 featuring a more complex space of
meanings and a larger space of utterances. Another
example from the dataset (introduced by Monroe
et al., 2017) is given in Table 2. For this task, we
use human-generated utterances collected by the
authors across 948 games yielding a total of 46,994
utterances. We divide this data into an 80% / 10% /
20% train / validation / test splits. Here, we evalu-
ate models by measuring the accuracy with which
they can infer the intended meaning produced by a
human SPEAKER.
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Base models Following past work (Monroe et al.,
2017), we first train a transformer-based literal
listener as a model that takes in the three colors
and a natural language utterance, and uses these
to predict the index of the referent. We also train
a transformer-based speaker model, which takes
in the context and target referent and generates a
natural language utterance.

Candidate utterances The set of utterances are
produced by first sampling 5 candidate utterances
for each of the 3 possible targets from the speaker
model along with the produced utterance, for a total
of 16 candidates.

Results are shown in Figure 5 and Table 3. As
with past work (McDowell and Goodman, 2019;
Monroe et al., 2017), all models aside from BR per-
form well (even the literal listener); RECO matches
(or perhaps slightly improves upon) these results.

7 Conclusion

We have presented a model of pragmatic under-
standing based on equilibrium search called RECO.
In this model, speakers and listeners solve commu-
nicative tasks by searching for utterance-meaning
mappings that that simultaneously optimize reward
and similarity to a set of default meanings. RECO

offers a link between “algorithmic” models of prag-
matic reasoning and equilibrium-based models, and
accurately predicts human judgments across sev-
eral pragmatic reasoning tasks.
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